"""
Continuation base class definition
==================================
This module implements the definition used by any subsequent continuation subclass
in auto-AUTO.
"""
import re
from abc import ABC, abstractmethod
import os
import sys
import warnings
import logging
import pickle
from contextlib import contextmanager
import matplotlib.pyplot as plt
import numpy as np
logger = logging.getLogger('logger')
try:
auto_directory = os.environ['AUTO_DIR']
for path in sys.path:
if auto_directory in path:
break
else:
# sys.path.append(auto_directory + '/python/auto')
sys.path.append(os.path.join(auto_directory, 'python'))
except KeyError:
logger.warning('Unable to find auto directory environment variable.')
import auto.AUTOCommands as ac
from auto.AUTOExceptions import AUTORuntimeError
# TODO: - Check what happens if parameters are integers
[docs]
class Continuation(ABC):
"""Base class for any continuation in auto-AUTO.
Parameters
----------
model_name: str
The name of the model to load. Used to load the .f90 file of the provided model.
config_object: ~auto2.parsers.config.ConfigParser
A loaded ConfigParser object.
path_name: str, optional
The directory path where files are read/saved.
If `None`, defaults to current working directory.
Attributes
----------
model_name: str
The name of the loaded model. Used to load the .f90 file of the provided model.
config_object: ~auto2.parsers.config.ConfigParser
A loaded ConfigParser object.
continuation: dict
Dictionary holding the forward and backward continuation data.
branch_number: int
The AUTO branch number attributed to the continuation(s). This number can be set manually by passing the IBR AUTO parameter when
starting the continuations (see the :meth:`make_continuation` documentation for more details).
initial_data: ~numpy.ndarray or AUTOSolution object
The initial data used to start the continuation(s).
auto_filename_suffix: str
Suffix for the |AUTO| files used to save the continuation(s) data and parameters on disk.
"""
def __init__(self, model_name, config_object, path_name=None):
self.config_object = config_object
self.model_name = model_name
self.continuation = dict()
self.branch_number = None
self.initial_data = None
self.auto_filename_suffix = ""
self._path_name = None
if path_name is not None:
self.set_path_name(path_name)
# plots default behaviours
self._default_marker = None
self._default_markersize = None
self._default_linestyle = None
self._default_linewidth = None
# options
self._retry = 3
[docs]
@abstractmethod
def make_continuation(self, initial_data, auto_suffix="", only_forward=False, **continuation_kwargs):
"""Make both forward and backward (if possible) continuation.
To be implemented in subclasses.
Parameters
----------
initial_data: ~numpy.ndarray or AUTOSolution
Initial data used to start the continuation(s).
auto_suffix: str, optional
Suffix to use for the |AUTO| and Pickle files used to save the continuation(s)
data, parameters and metadata on disk. If not provided, does not save the data on disk.
only_forward: bool, optional
If `True`, compute only the forward continuation (positive `DS` parameter).
If `False`, compute in both backward and forward direction.
Default to `False`.
continuation_kwargs: dict
Keyword arguments to be passed to the |AUTO| continuation.
See below for further details.
Notes
-----
**AUTO Continuation Keyword Arguments**: See Section 10.8 in the |AUTO| documentation for further details.
We provide below the most important ones:
Other Parameters
----------------
DS: float, optional
AUTO uses pseudo-arclength continuation for following solution families.
The pseudo-arclength stepsize is the distance between the current solution and the next solution on a family.
By default, this distance includes all state variables (or state functions) and all free parameters.
The constant `DS` defines the pseudo-arclength stepsize to be used for the first attempted step along any family.
DS may be chosen positive or negative; changing its sign reverses the direction of computation.
The relation `DSMIN` ≤ | `DS` | ≤ `DSMAX` must be satisfied. The precise choice of `DS` is problem-dependent.
DSMIN: float, optional
This is minimum allowable absolute value of the pseudo-arclength stepsize.
`DSMIN` must be positive. It is only effective if the pseudo-arclength step is adaptive, i.e., if `IADS`>0.
The choice of `DSMIN` is highly problem-dependent.
DSMAX: float, optional
The maximum allowable absolute value of the pseudo-arclength stepsize.
`DSMAX` must be positive.
It is only effective if the pseudo-arclength step is adaptive, i.e., if `IADS`>0.
The choice of `DSMAX` is highly problem-dependent.
NMX: int, optional
The maximum number of steps to be taken along the branch.
IBR: int, optional
This constant specifies the initial branch number BR that is used. The default `IBR=0` means that
that this number is determined automatically.
ILP: int, optional
* If `ILP=0`: No detection of folds. This is the recommended choice in the AUTO documentation.
* If `ILP=1`: Detection of folds. To be used if subsequent fold continuation is intended.
SP: list(str), optional
This constant controls the detection of bifurcations and adds stopping conditions.
It is specified as a list of bifurcation type strings followed by an optional number.
If this number is `0`, then the detection of this bifurcation is turned off, and if it is missing then the detection is turned on.
A number `n` greater than zero specifies that the continuation should stop as soon as the nth bifurcation of this type has been
reached.
Examples:
- `SP=[’LP0’]` turn off detection of folds.
- `SP=[’LP’,’HB3’,’BP0’,’UZ3’]` turn on the detection of folds and Hopf bifurcations, turn off detection of branch points
and stop at the third Hopf bifurcation or third user defined point, whichever comes first.
ISP: int, optional
This constant controls the detection of Hopf bifurcations, branch points, period-doubling bifurcations, and torus bifurcations:
* If `ISP=0` This setting disables the detection of Hopf bifurcations, branch points, period doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.
* If `ISP=1` Branch points and Hopf bifurcations are detected for algebraic equations. Branch points, period-doubling
bifurcations and torus bifurcations are not detected for periodic solutions and boundary value problems.
However, Floquet multipliers are computed.
* If `ISP=2` This setting enables the detection of all special solutions.
For periodic solutions and rotations, the choice `ISP=2` should be used with care,
due to potential inaccuracy in the computation of the linearized Poincar ́e map and possible rapid variation of the
Floquet multipliers.
* If `ISP=3` Hopf bifurcations will not be detected. Branch points will be detected, and AUTO will monitor
the Floquet multipliers. Period-doubling and torus bifurcations will go undetected. This option is useful for
certain problems with non-generic Floquet behavior.
* If `ISP=4` Branch points and Hopf bifurcations are detected for algebraic equations. Branch points are not detected
for periodic solutions and boundary value problems.
AUTO will monitor the Floquet multipliers, and period-doubling and torus bifurcations will be detected.
ISW: int, optional
This constant controls branch switching at branch points for the case of differential equations. Note that branch switching
is automatic for algebraic equations.
* If `ISW=1` This is the normal value of `ISW`.
* If `ISW=-1` If `IRS` is the label of a branch point or a period-doubling bifurcation then branch switching will be done.
For period doubling bifurcations it is recommended that `NTST` be increased.
* If `ISW=2` If IRS is the label of a fold, a Hopf bifurcation point, a period-doubling, a torus bifurcation,
or, in a non-generic (symmetric) system, a branch point then a locus of such points will be computed.
* If `ISW=3` If `IRS` is the label of a branch point in a generic (non-symmetric) system then a locus of such points will
be computed. Two additional free parameters must be specified for such continuations
MXBF: int, optional
This constant, which is effective for algebraic problems only, sets the maximum number of bifurcations to be treated.
Additional branch points will be noted, but the corresponding bifurcating families will not be computed.
dat: str, optional
This constant, where `dat=’filename’`, sets the name of a user-supplied ASCII data file `filename.dat`,
from which the continuation is to be restarted.
The first column in the data file denotes the time, which does not need to be rescaled to the
interval `[0, 1]`, and further columns the coordinates of the solution. The parameter `IRS` must be
set to `0`.
PAR: dict, optional
Determines the parameter values for the continuation to start from.
Should be entred as `{'parameter_name': parameter_value}`.
IRS: int or str, optional
This constant sets the label of the solution where the computation is to be restarted.
Setting `IRS=0` is typically used in the first run of a new problem.
To restart the computation at the `n`-th label, use `IRS=n`.
To restart the computation at a specific label (for example `HB12`), use `IRS=HB12`.
TY: str, optional
This constant modifies the type from the restart solution.
This is sometimes useful in conservative or extended systems, declaring a regular point to be
a Hopf bifurcation point `TY=’HB’` or a branch point `TY=’BP’`.
IPS: int, optional
This constant defines the problem type:
* If `IPS=0` algebraic bifurcation problem.
* If `IPS=1` stationary solutions of ODEs with detection of Hopf bifurcations.
* If `IPS=-1` fixed points of the discrete dynamical systems.
* If `IPS=-2` time integration using implicit Euler.
* If `IPS=2` computation of periodic solutions.
* If `IPS=4` boundary value problems.
* If `IPS=5` algebraic optimization problems.
* If `IPS=7` boundary value problem with computation of Floquet multipliers.
* If `IPS=9` option is used in connection with the HomCont algorithms
* If `IPS=11` spatially uniform solutions of a system of parabolic PDEs, with detection of traveling wave bifurcations.
* If `IPS=12` continuation of traveling wave solutions to a system of parabolic PDEs.
* If `IPS=14` time evolution for a system of parabolic PDEs subject to periodic boundary conditions.
"""
pass
[docs]
@abstractmethod
def make_forward_continuation(self, initial_data, auto_suffix="", **continuation_kwargs):
"""Make the forward continuation.
To be implemented in subclasses.
Parameters
----------
initial_data: ~numpy.ndarray or AUTOSolution
Initial data used to start the continuation(s).
auto_suffix: str, optional
Suffix to use for the |AUTO| and Pickle files used to save the continuation(s)
data, parameters and metadata on disk. If not provided, does not save the data on disk.
continuation_kwargs: dict
Keyword arguments to be passed to the |AUTO| continuation.
See below for further details
Notes
-----
**AUTO Continuation Keyword Arguments**: See Section 10.8 in the |AUTO| documentation for further details.
The most important ones are provided in the documentation of the :meth:`make_continuation` method.
"""
pass
[docs]
@abstractmethod
def make_backward_continuation(self, initial_data, auto_suffix="", **continuation_kwargs):
"""Make the backward continuation.
To be implemented in subclasses.
Parameters
----------
initial_data: ~numpy.ndarray or AUTOSolution
Initial data used to start the continuation(s).
auto_suffix: str, optional
Suffix to use for the |AUTO| and Pickle files used to save the continuation(s)
data, parameters and metadata on disk. If not provided, does not save the data on disk.
continuation_kwargs: dict
Keyword arguments to be passed to the |AUTO| continuation.
See below for further details
Notes
-----
**AUTO Continuation Keyword Arguments**: See Section 10.8 in the |AUTO| documentation for further details.
The most important ones are provided in the documentation of the :meth:`make_continuation` method.
"""
pass
def _get_dict(self):
state = self.__dict__.copy()
state['continuation'] = {
'forward': None,
'backward': None
}
if not isinstance(self.initial_data, (np.ndarray, str)) and self.initial_data is not None:
state['initial_data'] = {key: self.initial_data[key] for key in ['BR', 'PT', 'TY name', 'TY number', 'Label']}
return state
@abstractmethod
def _set_from_dict(self, state, load_initial_data=True):
pass
@property
def path_name(self):
"""str: The path where the |AUTO| and AUTO² files must be or are stored."""
return self._path_name
[docs]
def set_path_name(self, path_name):
"""Set the path where the |AUTO| and AUTO² files must be or are stored.
Parameters
----------
path_name: str
The path.
"""
if os.path.exists(path_name):
self._path_name = path_name
else:
warnings.warn("Path name given does not exist. Using the current working directory.")
self._path_name = None
[docs]
@contextmanager
def temporary_chdir(self, new_dir):
"""
As AUTOCommands does not provide functionality to pass a filepath, this is a workaround to switch paths for loading/saving.
"""
# Store the current directory
original_dir = os.getcwd()
if self._path_name is not None:
os.chdir(new_dir)
try:
yield
finally:
# Restore the original directory
os.chdir(original_dir)
[docs]
def auto_save(self, auto_suffix):
"""Save the |AUTO| files for both the forward and backward continuations if they exist.
Parameters
----------
auto_suffix: str
Suffix to use for the |AUTO| files used to save the continuation data on disk.
"""
if self.continuation:
for direction in ['forward', 'backward']:
if self.continuation[direction] is not None:
with self.temporary_chdir(self._path_name):
ac.save(self.continuation[direction], auto_suffix + '_' + direction)
self.auto_filename_suffix = auto_suffix
[docs]
def auto_load(self, auto_suffix):
"""Load the |AUTO| files for both the forward and backward continuations if they exist.
Parameters
----------
auto_suffix: str
Suffix to use for the |AUTO| files used to load the continuation data from disk.
"""
self.continuation = dict()
for direction in ['forward', 'backward']:
try:
# Changing the directory
with self.temporary_chdir(self._path_name):
r = ac.loadbd(auto_suffix + '_' + direction)
self.continuation[direction] = r
except (FileNotFoundError, OSError, AUTORuntimeError):
self.continuation[direction] = None
if self.continuation['forward'] is None and self.continuation['backward'] is None:
warnings.warn('Files not found. Unable to load data.')
else:
self.auto_filename_suffix = auto_suffix
[docs]
def save(self, filename=None, auto_filename_suffix=None, **kwargs):
"""Save the |AUTO| files and the branch parameters and metadata for both
the forward and backward continuations if they exist.
The branch parameters and metadata will be stored in a Pickle file.
Parameters
----------
filename: str or None, optional
The filename used to store the continuation(s) parameters and metadata
to disk in Pickle format.
If `None`, will assign a default generic name.
Default is `None`.
auto_filename_suffix: str or None, optional
Suffix to use for the |AUTO| files used to save the continuation data from disk.
If `None`, will assign a default generic suffix.
Default is `None`.
"""
if auto_filename_suffix is None:
if self.isfixedpoint:
self.auto_filename_suffix = "fp_"+str(self.branch_number)
else:
self.auto_filename_suffix = "po_" + str(self.branch_number)
warnings.warn('No AUTO filename suffix set. Using a default one: ' + self.auto_filename_suffix)
else:
self.auto_filename_suffix = auto_filename_suffix
self.auto_save(self.auto_filename_suffix)
if filename is None:
if self.isfixedpoint:
filename = "fp_"+str(self.branch_number)+'.pickle'
else:
filename = "po_"+str(self.branch_number)+'.pickle'
warnings.warn('No pickle filename prefix provided. Using a default one: ' + filename)
state = self._get_dict()
filepath = filename if self._path_name is None else os.path.join(self._path_name, filename)
with open(filepath, 'wb') as f:
pickle.dump(state, f, **kwargs)
[docs]
def load(self, filename, load_initial_data=True, **kwargs):
"""Load the |AUTO| files and the branch parameters and metadata for both
the forward and backward continuations if they exist.
Parameters
----------
filename: str
The filename used to store the continuation(s) parameters and metadata
to disk in Pickle format.
load_initial_data: bool
Try or not to load the initial data field.
Default to `True`.
"""
try:
filepath = filename if self._path_name is None else os.path.join(self._path_name, filename)
with open(filepath, 'rb') as f:
tmp_dict = pickle.load(f, **kwargs)
except FileNotFoundError:
warnings.warn('File not found. Unable to load data.')
return None
self._set_from_dict(tmp_dict, load_initial_data=load_initial_data)
@property
def isfixedpoint(self):
"""bool: True if the current object is a fixed point continuation."""
if self.config_object.parameters_dict[11] not in self.available_variables and 11 not in self.available_variables:
return True
else:
return False
@property
def isperiodicorbit(self):
"""bool: True if the current object is a periodic orbit continuation."""
return not self.isfixedpoint
@property
def available_variables(self):
"""list(str): Return the available variables in the continuation data."""
if self.continuation:
if self.continuation['forward'] is not None:
return self.continuation['forward'].data[0].keys()
elif self.continuation['backward'] is not None:
return self.continuation['backward'].data[0].keys()
else:
return None
else:
return None
@property
def phase_space_variables(self):
"""list(str): Return the variables of the phase space of the configured dynamical system."""
return self.config_object.variables
[docs]
def diagnostics(self):
"""str: Return the AUTO diagnostics of the continuations as a string."""
if self.continuation:
s = ''
if self.continuation['forward'] is not None:
s += 'Forward\n-----------------------\n'
for t in self.continuation['forward'].data[0].diagnostics:
s += t['Text']
if self.continuation['backward'] is not None:
s += 'Backward\n-----------------------\n'
for t in self.continuation['backward'].data[0].diagnostics:
s += t['Text']
return s
else:
return None
[docs]
def print_diagnostics(self):
"""Method which prints the full AUTO diagnostics of the continuations."""
if self.continuation:
s = self.diagnostics()
print(s)
[docs]
def point_diagnostic(self, idx):
"""Method which returns the diagnostic of a given point of the continuation.
Parameters
----------
idx: str or int
|AUTO| index of the point to give the diagnostic from.
If `idx`:
* is a string, it should identify the label of the point, assuming the
point has a label. Backward continuation label must be preceded by
a `'-'` character. E.g. `'HB2'` would identify the second Hopf bifurcation
point of the forward continuation, while `'-UZ3'` identifies the third
user-defined label of the backward branch.
* is an integer, it corresponds to the index of the point. Positive
integers identify points on the forward continuation, while negative integers
identify points on the backward continuation. The zero index identifies the
initial point of the continuations.
Returns
-------
str
The point diagnostic.
"""
if self.continuation is not None:
if isinstance(idx, str):
if idx[0] == '-':
if self.continuation['backward'] is not None:
s = self.get_solution_by_label(idx)
idx = s['PT']
ix_map = self._solutions_index_map(direction='backward')
if idx is not None:
return self.continuation['backward'].data[0].diagnostics[ix_map[idx]]['Text']
else:
warnings.warn('No point diagnostic to show.')
return None
else:
warnings.warn('No backward branch to show the diagnostic for.')
return None
else:
if self.continuation['forward'] is not None:
s = self.get_solution_by_label(idx)
idx = s['PT']
ix_map = self._solutions_index_map(direction='forward')
if idx is not None:
return self.continuation['forward'].data[0].diagnostics[ix_map[idx]]['Text']
else:
warnings.warn('No point diagnostic to show.')
return None
else:
warnings.warn('No forward branch to show the diagnostic for.')
return None
if idx >= 0:
if self.continuation['forward'] is not None:
ix_map = self._solutions_index_map(direction='forward')
if idx in ix_map:
return self.continuation['forward'].data[0].diagnostics[ix_map[idx]]['Text']
else:
warnings.warn('Point index not found. No point diagnostic to show.')
return None
else:
warnings.warn('No forward branch to show the diagnostic for.')
return None
else:
if self.continuation['backward'] is not None:
ix_map = self._solutions_index_map(direction='backward')
if -idx in ix_map:
return self.continuation['backward'].data[0].diagnostics[ix_map[-idx]]['Text']
else:
warnings.warn('Point index not found. No point diagnostic to show.')
return None
else:
warnings.warn('No backward branch to show the diagnostic for.')
return None
else:
return None
[docs]
def print_point_diagnostic(self, idx):
"""Method which prints the diagnostic of a given point of the continuation.
Parameters
----------
idx: str or int
|AUTO| index of the point to give the diagnostic from.
If `idx`:
* is a string, it should identify the label of the point, assuming the
point has a label. Backward continuation label must be preceded by
a `'-'` character. E.g. `'HB2'` would identify the second Hopf bifurcation
point of the forward continuation, while `'-UZ3'` identifies the third
user-defined label of the backward branch.
* is an integer, it corresponds to the index of the point. Positive
integers identify points on the forward continuation, while negative integers
identify points on the backward continuation. The zero index identifies the
initial point of the continuations.
"""
print(self.point_diagnostic(idx))
[docs]
def find_solution_index(self, label):
"""Find the index of a given solution label.
Parameters
----------
label: str
A string with the label of the point for which to return the solution object.
Backward continuation label must be preceded by a `'-'` character. E.g. `'HB2'`
identifies the second Hopf bifurcation point of the forward continuation,
while `'-UZ3'` identifies the third user-defined label of the backward branch.
Returns
-------
int
The AUTO index of the provided label.
Positive integers identify points on the forward
continuation, while negative integers identify points on the backward
continuation.
The zero index identifies the initial point of the continuations.
"""
s = self.get_solution_by_label(label)
return s['PT']
def _find_solution_python_auto_index(self, label):
if self.continuation:
if label[0] == "-":
if self.solutions_label['backward'] is not None:
label = label[1:]
tgt = label[:2]
sn = int(label[2:])
idx = 0
count = 0
for la in self.solutions_label['backward']:
if la == tgt:
count += 1
if count >= sn:
break
idx += 1
else:
warnings.warn('No solution found.')
return None
return self._solutions_python_auto_index['backward'][idx]
else:
return None
else:
if self.solutions_label['forward'] is not None:
tgt = label[:2]
sn = int(label[2:])
idx = 0
count = 0
for la in self.solutions_label['forward']:
if la == tgt:
count += 1
if count >= sn:
break
idx += 1
else:
warnings.warn('No solution found.')
return None
return self._solutions_python_auto_index['forward'][idx]
else:
return None
else:
return None
@staticmethod
def _parse_diagnostic(diag):
# Extract Point Number from text
extracted_vals = list()
lines = diag.strip().splitlines()
rows = [re.split(r'\s{1,}', line.strip()) for line in lines if line.strip()]
val_num = 1
pt_num = -1
for line in rows:
if "Multiplier" in line:
if len(line) == 9:
# Assumes a split array of [BR, PT, "Multiplier", multiplier num, FM_re, FM_im, "Abs.", "Val", ab_val]
if pt_num == -1:
pt_num = int(line[1])
else:
if pt_num != int(line[1]):
raise UserWarning("Cannot find consistent Point Number")
if val_num == int(line[3]):
# In the case that some numbers are passed as Fortran HUGE(1.0D0), we try two methods to take floats
try:
re_val = float(line[4])
except ValueError:
if re.match(r'^-?\d+(\.\d+)?[+-]\d+$', line[4]):
re_val = float(re.sub(r'([+-]\d+)$', r'e\1', line[4]))
else:
raise UserWarning("unexpected form of float")
try:
im_val = float(line[5])
except ValueError:
if re.match(r'^-?\d+(\.\d+)?[+-]\d+$', line[5]):
im_val = float(re.sub(r'([+-]\d+)$', r'e\1', line[5]))
else:
raise UserWarning("unexpected form of float")
extracted_vals.append([re_val, im_val])
val_num += 1
elif "Eigenvalue" in line:
if len(line) == 6:
# Assumes a split array of [BR, PT, "Multiplier", multiplier num":", lambda_re, lambda_im]
if pt_num == -1:
pt_num = int(line[1])
else:
if pt_num != int(line[1]):
raise UserWarning("Cannot find consistent Point Number")
if val_num == int(line[3][:-1]):
# In the case that some numbers are passed as Fortran HUGE(1.0D0), we try two methods to take floats
try:
re_val = float(line[4])
except ValueError:
if re.match(r'^-?\d+(\.\d+)?[+-]\d+$', line[4]):
re_val = float(re.sub(r'([+-]\d+)$', r'e\1', line[4]))
else:
raise UserWarning("unexpected form of float")
try:
im_val = float(line[5])
except ValueError:
if re.match(r'^-?\d+(\.\d+)?[+-]\d+$', line[5]):
im_val = float(re.sub(r'([+-]\d+)$', r'e\1', line[5]))
else:
raise UserWarning("unexpected form of float")
extracted_vals.append([re_val, im_val])
val_num += 1
else:
continue
# if pt_num has not been updated, attempt to update it using the first row of data:
if rows[0][1] == "PT":
pt_num = int(rows[1][1])
return extracted_vals, pt_num
def _solutions_index_map(self, direction='forward'):
"""Function creates a map between the `Point number` as found in the solution file, and the `Point number` in the diagnostic d. file.
It was found that when AUTO cannot converge, it still logs the point and the d. file index then does not correspond with the sol file.
"""
ix_map = dict()
if self.continuation[direction] is not None:
diag_data = self.continuation[direction].data[0].diagnostics.__dict__.copy()['data']
for i, d in enumerate(diag_data):
stab_vals, pt_num = self._parse_diagnostic(d['Text'])
if i < len(diag_data) - 1:
dd = diag_data[i + 1]
stab_vals_next, pt_num_next = self._parse_diagnostic(dd['Text'])
if len(stab_vals) > 0 and pt_num != pt_num_next:
ix_map[pt_num] = i
else:
# Catch to compare final entry of diagnostic
if len(stab_vals) > 0:
ix_map[pt_num] = i
return ix_map
@property
def stability(self):
"""dict(list): The stability information of both forward and backward continuations."""
if self.continuation:
s = dict()
for direction in ['forward', 'backward']:
if self.continuation[direction] is not None:
s[direction] = self.continuation[direction].data[0].stability()
else:
s[direction] = list()
return s
else:
return None
@property
def number_of_points(self):
"""dict(int): The number of points of both forward and backward continuations."""
if self.continuation:
n = dict()
for direction in ['forward', 'backward']:
if self.continuation[direction] is not None:
n[direction] = abs(self.continuation[direction].data[0].stability()[-1])
else:
n[direction] = 0
return n
else:
return None
@property
def continuation_parameters(self):
"""dict(list(str)): The continuation parameters of both forward and backward continuations."""
if self.continuation:
if self.continuation['forward']:
return self.continuation['forward'].c['ICP']
elif self.continuation['backward']:
return self.continuation['backward'].c['ICP']
else:
return list()
else:
return list()
@property
def solutions_index(self):
"""dict(list(int)): The indices of all the solutions of both forward and backward continuations."""
d = self.solutions_list_by_direction
rd = dict()
if d is not None:
rd['forward'] = list()
for sol in d['forward']:
idx_pt = sol['PT']
rd['forward'].append(abs(idx_pt))
rd['backward'] = list()
for sol in d['backward']:
idx_pt = sol['PT']
rd['backward'].append(abs(idx_pt))
return rd
else:
return None
@property
def _solutions_python_auto_index(self):
if self.continuation:
d = dict()
if self.continuation['forward'] is not None:
idx = self.continuation['forward'].data[0].labels.getIndices()
d['forward'] = idx
else:
d['forward'] = list()
if self.continuation['backward'] is not None:
idx = self.continuation['backward'].data[0].labels.getIndices()
d['backward'] = idx
else:
d['backward'] = list()
return d
else:
return None
@property
def solutions_label(self):
"""dict(list(str)): The labels of all the solutions of both forward and backward continuations."""
indices = self._solutions_python_auto_index
if indices is not None:
d = dict()
if indices['forward']:
idx = indices['forward']
sl = list()
for i in idx:
sl.append(str(self.continuation['forward'].data[0].labels.by_index[i].keys()).split("'")[1])
d['forward'] = sl
else:
d['forward'] = list()
if indices['backward']:
idx = indices['backward']
sl = list()
for i in idx:
sl.append(str(self.continuation['backward'].data[0].labels.by_index[i].keys()).split("'")[1])
d['backward'] = sl
else:
d['backward'] = list()
return d
else:
return None
@property
def number_of_solutions(self):
"""dict(int): The number of solutions of both forward and backward continuations."""
sd = dict()
sols = self.solutions_list_by_direction
if self.continuation:
for direction in ['forward', 'backward']:
sd[direction] = len(sols[direction])
return sd
else:
return None
@property
def full_solutions_list_by_label(self):
"""list(AUTOSolution object): The full list of solutions sorted by labels of both forward and backward continuations."""
sd = self.solutions_list_by_direction_and_by_label
if sd['backward']:
sl = sd['backward']
else:
sl = list()
if sd['forward']:
sl.extend(sd['forward'])
return sl
@property
def full_solutions_list(self):
"""list(AUTOSolution object): The full list of solutions of the branch ordered from the last solution of the backward
continuation to the last solution of the forward continuation."""
sd = self.solutions_list_by_direction
if sd['backward']:
if self.solutions_label['backward'][0] == 'EP':
sl = sd['backward'][-1:0:-1]
else:
sl = sd['backward'][::-1]
else:
sl = list()
if sd['forward']:
sl.extend(sd['forward'])
return sl
@property
def solutions_list_by_direction_and_by_label(self):
"""dict(list(AUTOSolution object)): The full list of solutions sorted by labels and direction for both forward
and backward continuations."""
sd = dict()
if self.solutions_label is not None:
sd['forward'] = list()
sd['backward'] = list()
if self.continuation['forward'] is not None:
lab_list = list()
for lab in self.solutions_label['forward']:
if lab not in lab_list:
lab_list.append(lab)
for lab in lab_list:
sd['forward'].extend(self.continuation['forward'].getLabel(lab))
if self.continuation['backward'] is not None:
lab_list = list()
for lab in self.solutions_label['backward']:
if lab not in lab_list:
lab_list.append(lab)
for lab in lab_list:
sd['backward'].extend(self.continuation['backward'].getLabel(lab))
return sd
@property
def solutions_list_by_direction(self):
"""dict(list(AUTOSolution object)): The full list of solutions sorted by direction for both
forward and backward continuations."""
indices = self._solutions_python_auto_index
labels = self.solutions_label
sd = dict()
if indices is not None:
sd['forward'] = list()
sd['backward'] = list()
if self.continuation['forward'] is not None:
for lab, idx in zip(labels['forward'], indices['forward']):
if 'solution' in self.continuation['forward'].data[0].labels.by_index[idx][lab]:
sol = self.continuation['forward'].data[0].labels.by_index[idx][lab]['solution']
sd['forward'].append(sol)
if self.continuation['backward'] is not None:
for lab, idx in zip(labels['backward'], indices['backward']):
if 'solution' in self.continuation['backward'].data[0].labels.by_index[idx][lab]:
sol = self.continuation['backward'].data[0].labels.by_index[idx][lab]['solution']
sd['backward'].append(sol)
return sd
[docs]
def solutions_parameters(self, parameters, solutions_types=('HB', 'BP', 'UZ', 'PD', 'TR', 'LP'), forward=None):
"""Return the parameters value for the solutions of the backward and forward continuations.
Parameters
----------
parameters: list(str)
The parameters to be returned.
solutions_types: list(str), optional
The types of solution to consider in the search.
Default to `['HB', 'BP', 'UZ', 'PD', 'TR', 'LP']`.
forward: bool or None, optional
If `True`, search only in the forward continuation.
If `False`, search only in the backward continuation.
If `None`, search in both backward and forward direction.
Default to `None`.
Returns
-------
~numpy.ndarray
The values of the requested solutions parameters.
"""
if not isinstance(parameters, (tuple, list)):
parameters = [parameters]
if isinstance(solutions_types, (tuple, list)):
sl = self.get_filtered_solutions_list(labels=solutions_types, forward=forward)
elif isinstance(solutions_types, str):
if solutions_types == 'all':
if forward is None:
sl = self.full_solutions_list
elif forward:
sl = self.solutions_list_by_direction['forward']
else:
sl = self.solutions_list_by_direction['backward']
else:
sl = self.full_solutions_list
params = dict()
for param in parameters:
par_list = list()
for s in sl:
try:
par_list.append(max(s[param]))
except TypeError:
par_list.append(float(s[param]))
params[param] = par_list
return np.squeeze(np.array(list(params.values()))).reshape((len(parameters), -1))
[docs]
def get_solution_by_label(self, label):
"""Get the |AUTO| solution object corresponding to a given label.
Parameters
----------
label: str
A string with the label of the point for which to return the solution object.
Backward continuation label must be preceded by a `'-'` character. E.g. `'HB2'`
identifies the second Hopf bifurcation point of the forward continuation,
while `'-UZ3'` identifies the third user-defined label of the backward branch.
Returns
-------
AUTOSolution object
The sought AUTO solution object.
"""
if self.continuation:
if label[0] == '-' and self.continuation['backward'] is not None:
label = label[1:]
return self.continuation['backward'].getLabel(label)
elif label[0] != '-' and self.continuation['forward'] is not None:
return self.continuation['forward'].getLabel(label)
else:
return None
else:
return None
[docs]
def get_solution_by_index(self, idx):
"""Get the |AUTO| solution object corresponding to a index.
Parameters
----------
idx: int
The index of the point. Positive integers identify points on the forward
continuation, while negative integers identify points on the backward
continuation.
The zero index identifies the initial point of the continuations.
Returns
-------
AUTOSolution object
The sought AUTO solution object.
"""
if self.continuation:
sd = self.solutions_list_by_direction
if idx >= 0:
for s in sd['forward']:
if s['PT'] == idx:
return s
else:
warnings.warn(f'Solution for index {idx} not found.')
elif idx < 0:
for s in sd['backward']:
if s['PT'] == abs(idx):
return s
else:
warnings.warn(f'Solution for index {idx} not found.')
else:
return None
else:
return None
[docs]
def get_filtered_solutions_list(self, labels=None, indices=None, parameters=None, values=None, forward=None, tol=0.01):
"""Filter the full solutions list of the branch with different selection rules:
* Based on solution labels
* Based on solution indices
* Based matching solution parameters values with a specified list of values
Selection rules are selected by specifying a given keyword.
If no selection rule is provided, return the full list of solution in the selected direction(s).
Parameters
----------
labels: str or list(str), optional
Label or list of labels to look for the solutions. Labels are two-characters string specifying the solutions types to return.
For example `'BP'` will return all the branching points of the continuations.
This activates the selection rule based on labels and disable the others.
indices: int or list(int), optional
Index or list of indices to look for the solutions. AUTO index of solutions can be inquired for example by calling the
:meth:`print_summary` method of a given :class:`Continuation` object.
This activates the selection rule based on indices and disable the others.
parameters: str or list(str) or ~numpy.ndarray(str), optional
Parameter or list of parameters for which to match the solutions values to one provided by the `values` argument.
values: float or list(float) or ~numpy.ndarray(float), optional
List of parameters values to match to the solutions parameters values.
Can be a float if only one parameter is specified in the `parameters` arguments, otherwise a list or a :class:`~numpy.ndarray` array
must be provided.
If a list is provided, assuming `n` parameters were specified in the `parameters` argument
and`m` values are sought, it should be a nested list with the following structure:
`[[param1_value1, param1_value2, ..., param1_valuem], ..., [paramn_value1, paramn_value2, ..., paramn_valuem]]`
If a :class:`~numpy.ndarray` array is provided, with the same assumptions, it should be a 2-D array with shape (n, m) with the
parameters values.
forward: bool or None, optional
If `True`, search only in the forward continuation.
If `False`, search only in the backward continuation.
If `None`, search in both backward and forward direction.
Default to `None`.
tol: float or list(float) or ~numpy.ndarray(float), optional
The numerical tolerance of the values comparison if the selection rule based on parameters values is activated
(by setting the arguments `parameters` and `values`).
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
Default to `0.01`.
Returns
-------
list(AUTOSolution objects):
A list of the sought solutions
"""
if parameters is not None:
if isinstance(parameters, (list, tuple)):
parameters = np.array(parameters)
elif isinstance(parameters, str):
parameters = np.array(parameters)[np.newaxis]
if values is not None:
if isinstance(values, (float, int)):
values = [values] * parameters.shape[0]
values = np.array(values)
elif isinstance(values, (list, tuple)):
values = np.array(values)
if len(values.shape) == 1:
values = values[:, np.newaxis]
if values.shape[0] != parameters.shape[0]:
warnings.warn('Wrong number of values provided for the number of parameters test requested.')
return list()
else:
warnings.warn('No values provided for the parameters specified.')
return list()
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
elif isinstance(tol, float):
tol = np.array([tol] * values.shape[0])
else:
tol = np.array(tol)
if forward is None:
solutions_list = self.full_solutions_list
elif forward:
solutions_list = self.solutions_list_by_direction['forward']
else:
solutions_list = self.solutions_list_by_direction['backward']
if labels is not None:
if not isinstance(labels, (list, tuple)):
labels = [labels]
new_solutions_list = list()
for sol in solutions_list:
if sol['TY'] in labels:
new_solutions_list.append(sol)
solutions_list = new_solutions_list
elif indices is not None:
if not isinstance(indices, (list, tuple)):
indices = [indices]
new_solutions_list = list()
for sol in solutions_list:
if sol['PT'] in indices:
new_solutions_list.append(sol)
solutions_list = new_solutions_list
elif parameters is not None:
new_solutions_list = list()
for val in values.T:
for sol in solutions_list:
sol_val = np.zeros_like(val)
for i, param in enumerate(parameters):
if isinstance(sol[param], np.ndarray):
sol_val[i] = max(sol[param])
else:
sol_val[i] = float(sol[param])
diff = sol_val - val
if np.all(np.abs(diff) < tol):
new_solutions_list.append(sol)
solutions_list = new_solutions_list
return solutions_list
[docs]
def plot_branch_parts(self, variables=(0, 1), ax=None, figsize=(10, 8), markersize=12., plot_kwargs=None, marker_kwargs=None,
excluded_labels=('UZ', 'EP'), plot_sol_points=False, variables_name=None, cmap=None):
"""Plots a bifurcation diagram along specified variables, with branches and the bifurcation points
of fixed points and periodic orbits.
Parameters
----------
variables: tuple(int or str, int or str), optional
The index or label of the variables along which the bifurcation diagram is plotted.
If labels are used, it should be labels of the available monitored variables during the continuations
(if their labels have been defined in the AUTO configuration file) given by :meth:`available_variables`.
The first value in the tuple determines the variable plot on the x-axis and the second the y-axis.
Defaults to `(0, 1)`.
ax: matplotlib.axes.Axes or None, optional
A |Matplotlib| axis object to plot on. If `None`, a new figure is created.
figsize: tuple(float, float), optional
Dimension of the figure that is returned, only used if `ax` is not passed.
Defaults to `(10, 8)`.
markersize: float, optional
Size of the text plotted to display the bifurcation points. Defaults to `12`.
plot_kwargs: dict or None, optional
Optional key word arguments to pass to the plotting function, controlling the curves of the bifurcation diagram.
marker_kwargs: dict or None, optional
Optional key word arguments to pass to the plotting function, controlling the styles of the bifurcation point labels.
excluded_labels: str or list(str), optional
A list of 2-characters strings, controlling the bifurcation point type that are not plotted.
For example `['BP']` will result in branching points not being plotted.
Can be set to the string `'all'`, which results in no bifurcation being plotted at all.
Default to `['UZ','EP']`.
plot_sol_points: bool, optional
If `True`, a point is added to the points where a solution is stored. Defaults to False.
variables_name: list(str) or None, optional
The strings used to define the axis labels. If `None` defaults to the AUTO labels.
cmap: cmap or None, optional
The cmap used for plotting. If `None`, defaults to 'Reds'
Returns
-------
matplotlib.axes.Axes
A |Matplotlib| axis object showing the bifurcation diagram using a 3-dimensional projection.
"""
if not self.continuation:
return None
if ax is None:
fig = plt.figure(figsize=figsize)
ax = fig.gca()
if plot_kwargs is None:
plot_kwargs = dict()
if marker_kwargs is None:
marker_kwargs = dict()
vars = self.available_variables
for var in vars:
try:
if variables[0] in var:
var1 = var
break
except:
pass
else:
try:
var1 = vars[variables[0]]
except:
var1 = vars[0]
for var in vars:
try:
if variables[1] in var:
var2 = var
break
except:
pass
else:
try:
var2 = vars[variables[1]]
except:
var2 = vars[1]
if plot_sol_points:
if isinstance(cmap, str):
cmap = plt.get_cmap(cmap)
if cmap is None:
cmap = plt.get_cmap('Reds')
for direction in ['forward', 'backward']:
if self.continuation[direction] is not None:
labels = list()
for j, coords in enumerate(zip(self.continuation[direction][var1], self.continuation[direction][var2])):
lab = self.continuation[direction].data[0].getIndex(j)['TY name']
if lab == 'No Label':
pass
else:
labels.append((coords, lab))
pidx = 0
for idx in self.stability[direction]:
if idx < 0:
ls = '-'
else:
ls = '--'
plot_kwargs['linestyle'] = ls
lines_list = ax.plot(self.continuation[direction][var1][pidx:abs(idx)], self.continuation[direction][var2][pidx:abs(idx)], **plot_kwargs)
if plot_sol_points:
# generate points and colours for plotting
x_vals = self.solutions_parameters(parameters=var1)[0]
p_min, p_max = np.min(x_vals), np.max(x_vals)
y_vals = np.empty_like(x_vals)
point_color = list()
for i, x in enumerate(x_vals):
ix = np.argmin(np.abs(self.continuation[direction][var1][pidx:abs(idx)] - x))
y_vals[i] = (self.continuation[direction][var2][pidx:abs(idx)][ix])
point_color.append(cmap((x - p_min) / (p_max - p_min)))
ax.scatter(x_vals, y_vals, c=point_color)
c = lines_list[0].get_color()
plot_kwargs['color'] = c
pidx = abs(idx)
if excluded_labels != 'all':
for label in labels:
coords = label[0]
lab = label[1]
if lab not in excluded_labels:
ax.text(coords[0], coords[1], r'${\bf ' + lab + r'}$', fontdict={'family': 'sans-serif', 'size': markersize}, va='center', ha='center', **marker_kwargs,
clip_on=True)
if variables_name is None:
ax.set_xlabel(var1)
ax.set_ylabel(var2)
else:
if isinstance(variables_name, dict):
ax.set_xlabel(variables_name[var1])
ax.set_ylabel(variables_name[var2])
else:
ax.set_xlabel(variables_name[0])
ax.set_ylabel(variables_name[1])
return ax
[docs]
def plot_branch_parts_3D(self, variables=(0, 1, 2), ax=None, figsize=(10, 8), markersize=12., plot_kwargs=None, marker_kwargs=None,
excluded_labels=('UZ', 'EP'), variables_name=None):
"""Plots a bifurcation diagram on a 3-dimensional figure along specified variables, with branches and the bifurcation points
of fixed points and periodic orbits.
Parameters
----------
variables: tuple(int or str, int or str, int or str), optional
The index or label of the variables along which the bifurcation diagram is plotted.
If labels are used, it should be labels of the available monitored variables during the continuations
(if their labels have been defined in the AUTO configuration file) given by :meth:`available_variables`.
The first value in the tuple determines the variable plot on the x-axis, the second the y-axis, and the third value determines the z-axis.
Defaults to `(0, 1, 2)`.
ax: matplotlib.axes.Axes or None, optional
A |Matplotlib| axis object to plot on. If `None`, a new figure is created.
figsize: tuple(float, float), optional
Dimension of the figure that is returned, only used if `ax` is not passed.
Defaults to `(10, 8)`.
markersize: float, optional
Size of the text plotted to display the bifurcation points. Defaults to `12.`.
plot_kwargs: dict or None, optional
Optional key word arguments to pass to the plotting function, controlling the curves of the bifurcation diagram.
marker_kwargs: dict or None, optional
Optional key word arguments to pass to the plotting function, controlling the styles of the bifurcation point labels.
excluded_labels: str or list(str), optional
A list of 2-characters strings, controlling the bifurcation point type that are not plotted.
For example `['BP']` will result in branching points not being plotted.
Can be set to the string `'all'`, which results in no bifurcation being plotted at all.
Default to `['UZ','EP']`.
variables_name: list(str) or None, optional
The strings used to define the axis labels. If `None` defaults to the AUTO labels.
Returns
-------
matplotlib.axes.Axes
A |Matplotlib| axis object showing the bifurcation diagram using a 3-dimensional projection.
"""
if not self.continuation:
return None
if ax is None:
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection='3d')
if plot_kwargs is None:
plot_kwargs = dict()
if marker_kwargs is None:
marker_kwargs = dict()
vars = self.available_variables
for var in vars:
try:
if variables[0] in var:
var1 = var
break
except:
pass
else:
try:
var1 = vars[variables[0]]
except:
var1 = vars[0]
for var in vars:
try:
if variables[1] in var:
var2 = var
break
except:
pass
else:
try:
var2 = vars[variables[1]]
except:
var2 = vars[1]
for var in vars:
try:
if variables[2] in var:
var3 = var
break
except:
pass
else:
try:
var3 = vars[variables[2]]
except:
var3 = vars[2]
for direction in ['forward', 'backward']:
if self.continuation[direction] is not None:
labels = list()
for j, coords in enumerate(zip(self.continuation[direction][var1], self.continuation[direction][var2], self.continuation[direction][var3])):
lab = self.continuation[direction].data[0].getIndex(j)['TY name']
if lab == 'No Label':
pass
else:
labels.append((coords, lab))
pidx = 0
for idx in self.stability[direction]:
if idx < 0:
ls = '-'
else:
ls = '--'
plot_kwargs['linestyle'] = ls
lines_list = ax.plot(self.continuation[direction][var1][pidx:abs(idx)], self.continuation[direction][var2][pidx:abs(idx)],
self.continuation[direction][var3][pidx:abs(idx)], **plot_kwargs)
c = lines_list[0].get_color()
plot_kwargs['color'] = c
pidx = abs(idx)
if excluded_labels != 'all':
for label in labels:
coords = label[0]
lab = label[1]
if lab not in excluded_labels:
ax.text(coords[0], coords[1], coords[2], r'${\bf ' + lab + r'}$', fontdict={'family': 'sans-serif', 'size': markersize}, va='center', ha='center',
**marker_kwargs, clip_on=True)
if variables_name is None:
ax.set_xlabel(var1)
ax.set_ylabel(var2)
ax.set_zlabel(var3)
else:
if isinstance(variables_name, dict):
ax.set_xlabel(variables_name[var1])
ax.set_ylabel(variables_name[var2])
ax.set_zlabel(variables_name[var3])
else:
ax.set_xlabel(variables_name[0])
ax.set_ylabel(variables_name[1])
ax.set_zlabel(variables_name[2])
return ax
[docs]
def plot_solutions(self, variables=(0, 1), ax=None, figsize=(10, 8), markersize=None, marker=None, linestyle=None,
linewidth=None, color_solutions=False, plot_kwargs=None, labels=None, indices=None, parameter=None, value=None,
variables_name=None, tol=0.01):
"""
Plots the stored solutions for a given set of variables. Fixed points are plotted using points, periodic orbits are plot as curves.
Solutions that are plotted are filtered here using the selection rule-based :meth:`get_filtered_solutions_list` method.
However, if no selection rule is provided, it will plot all the solutions.
Parameters
----------
variables: tuple(int or str, int or str), optional
The index or label of the variables shown in the plot.
If labels are used, it should be labels of the phase space variables
(if they have been defined in the AUTO configuration file) given by :meth:`phase_space_variables`.
The first value in the tuple determines the variable plot on the x-axis, the second determines the y-axis.
Defaults to the first two variables: `(0, 1)`.
ax: matplotlib.axes.Axes or None, optional
A |Matplotlib| axis object to plot on. If `None`, a new figure is created.
figsize: figsize: tuple(float, float), optional
Dimension of the figure that is returned, only used if `ax` is not passed.
Defaults to `(10, 8)`.
markersize: float, optional
Size of the text plotted to display the bifurcation points. Defaults to `12`.
marker : str, optional
The marker style used for plotting fixed points. If `None`, set to default marker.
linestyle : str, optional
The line style used for plotting the periodic orbit solutions. If `None`, set to default marker.
linewidth : float, optional
The width of the lines showing the periodic solutions. If `None`, set to the default.
color_solutions : bool, optional
Whether to color each solution differently.
If `True`, and `parameter` argument is provided and valid, then solutions are colored based on the parameter value of a given solution.
Use the cmap provided in the `plot_kwargs` argument. If no cmap is provided there, use `Blues` cmap by default.
If `False`, all solutions are colored identically, controlled using `plot_kwargs`.
Default is `False`.
plot_kwargs: dict or None, optional
Additional keyword arguments for the plotting function. Default is `None`.
labels: str or list(str), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Label or list of labels to look for the solutions. Labels are two-characters string specifying the solutions types to return.
For example `'BP'` will return all the branching points of the continuations.
This activates the selection rule based on labels and disable the others.
indices: int or list(int), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Index or list of indices to look for the solutions. AUTO index of solutions can be inquired for example by calling the
:meth:`print_summary` method of a given :class:`Continuation` object.
This activates the selection rule based on indices and disable the others.
parameter: str or list(str) or ~numpy.ndarray(str), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Parameter or list of parameters for which to match the solutions values to one provided by the `values` argument.
value: float or list(float) or ~numpy.ndarray(float), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
List of parameters values to match to the solutions parameters values.
Can be a float if only one parameter is specified in the `parameters` arguments, otherwise a list or a :class:`~numpy.ndarray` array
must be provided.
If a list is provided, assuming `n` parameters were specified in the `parameters` argument
and`m` values are sought, it should be a nested list with the following structure:
`[[param1_value1, param1_value2, ..., param1_valuem], ..., [paramn_value1, paramn_value2, ..., paramn_valuem]]`
If a :class:`~numpy.ndarray` array is provided, with the same assumptions, it should be a 2-D array with shape (n, m) with the
parameters values.
variables_name: list(str) or None, optional
The strings used to plot the axis labels. If `None` defaults to the AUTO labels.
Defaults to `None`.
tol: float or list(float) or ~numpy. ndarray(float), optional
The numerical tolerance of the values comparison if the selection rule based on parameters values is activated
(by setting the arguments `parameters` and `values`).
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
Default to `0.01`.
Returns
-------
matplotlib.axes.Axes
A |Matplotlib| axis object with the plot of the solutions.
"""
if markersize is None:
markersize = self._default_markersize
if marker is None:
marker = self._default_marker
if linestyle is None:
linestyle = self._default_linestyle
if linewidth is None:
linewidth = self._default_linewidth
if ax is None:
fig = plt.figure(figsize=figsize)
ax = fig.gca()
if plot_kwargs is None:
plot_kwargs = dict()
# Colouring solutions dependant on parameter value
if 'cmap' in plot_kwargs:
cmap = plot_kwargs['cmap']
if isinstance(cmap, str):
cmap = plt.get_cmap(cmap)
plot_kwargs.pop('cmap')
else:
cmap = plt.get_cmap('Blues')
if color_solutions and (parameter is not None):
p_vals = self.solutions_parameters(parameters=parameter)
p_min, p_max = np.min(p_vals), np.max(p_vals)
if value is None:
value = p_vals
solutions_list = self.get_filtered_solutions_list(labels, indices, parameter, value, None, tol)
keys = self.config_object.variables
if variables[0] in keys:
var1 = variables[0]
else:
try:
var1 = keys[variables[0]]
except:
var1 = keys[0]
if variables[1] in keys:
var2 = variables[1]
else:
try:
var2 = keys[variables[1]]
except:
var2 = keys[1]
for sol in solutions_list:
x = sol[var1]
y = sol[var2]
if color_solutions and (parameter is not None):
plot_kwargs['color'] = cmap((sol.PAR[parameter] - p_min) / (p_max - p_min))
line_list = ax.plot(x, y, marker=marker, markersize=markersize, linestyle=linestyle, linewidth=linewidth,
**plot_kwargs)
if not color_solutions:
c = line_list[0].get_color()
plot_kwargs['color'] = c
if variables_name is None:
ax.set_xlabel(var1)
ax.set_ylabel(var2)
else:
if isinstance(variables_name, dict):
ax.set_xlabel(variables_name[var1])
ax.set_ylabel(variables_name[var2])
else:
ax.set_xlabel(variables_name[0])
ax.set_ylabel(variables_name[1])
return ax
[docs]
def plot_solutions_3D(self, variables=(0, 1, 2), ax=None, figsize=(10, 8), markersize=None, marker=None, linestyle=None,
linewidth=None, plot_kwargs=None, labels=None, indices=None, parameter=None, value=None,
variables_name=None, tol=0.01):
"""
Plots the stored solutions for a given set of variables, using a 3-dimensional projection.
Fixed points are plotted using points, periodic orbits are plotted as curves.
Solutions that are plotted are filtered here using the selection rule-based :meth:`get_filtered_solutions_list` method.
However, if no selection rule is provided, it will plot all the solutions.
Parameters
----------
variables: tuple(int or str, int or str, int or str), optional
The index or label of the variables shown in the plot.
If labels are used, it should be labels of the phase space variables
(if they have been defined in the AUTO configuration file) given by :meth:`phase_space_variables`.
The first value in the tuple determines the variable plot on the x-axis, the second determines the y-axis,
and the last value determines the z-axis.
Defaults to the first three variables: `(0, 1, 2)`.
ax: matplotlib.axes.Axes or None, optional
A |Matplotlib| axis object to plot on. If `None`, a new figure is created.
figsize: tuple(float, float), optional
Dimension of the figure that is returned, only used if `ax` is not passed.
Defaults to `(10, 8)`.
markersize: float, optional
Size of the text plotted to display the bifurcation points. Defaults to `12`.
marker : str, optional
The marker style used for plotting fixed points. If `None`, set to default marker.
linestyle : str, optional
The line style used for plotting the periodic orbit solutions. If `None`, set to default marker.
linewidth : float, optional
The width of the lines showing the periodic solutions. If `None`, set to the default.
plot_kwargs: dict or None, optional
Additional keyword arguments for the plotting function. Default is `None`.
labels: str or list(str), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Label or list of labels to look for the solutions. Labels are two-characters string specifying the solutions types to return.
For example `'BP'` will return all the branching points of the continuations.
This activates the selection rule based on labels and disable the others.
indices: int or list(int), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Index or list of indices to look for the solutions. AUTO index of solutions can be inquired for example by calling the
:meth:`print_summary` method of a given :class:`Continuation` object.
This activates the selection rule based on indices and disable the others.
parameter: str or list(str) or ~numpy.ndarray(str), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
Parameter or list of parameters for which to match the solutions values to one provided by the `values` argument.
value: float or list(float) or ~numpy.ndarray(float), optional
**Selection rule to select particular solutions (see** :meth:`get_filtered_solutions_list` **for more details.).**
List of parameters values to match to the solutions parameters values.
Can be a float if only one parameter is specified in the `parameters` arguments, otherwise a list or a :class:`~numpy.ndarray` array
must be provided.
If a list is provided, assuming `n` parameters were specified in the `parameters` argument
and`m` values are sought, it should be a nested list with the following structure:
`[[param1_value1, param1_value2, ..., param1_valuem], ..., [paramn_value1, paramn_value2, ..., paramn_valuem]]`
If a :class:`~numpy.ndarray` array is provided, with the same assumptions, it should be a 2-D array with shape (n, m) with the
parameters values.
variables_name: list(str) or None, optional
The strings used to plot the axis labels. If `None` defaults to the AUTO labels.
Defaults to `None`.
tol: float or list(float) or ~numpy. ndarray(float), optional
The numerical tolerance of the values comparison if the selection rule based on parameters values is activated
(by setting the arguments `parameters` and `values`).
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
Default to `0.01`.
Returns
-------
matplotlib.axes.Axes
A |Matplotlib| axis object with the 3-dimensional plot of the solutions.
"""
if markersize is None:
markersize = self._default_markersize
if marker is None:
marker = self._default_marker
if linestyle is None:
linestyle = self._default_linestyle
if linewidth is None:
linewidth = self._default_linewidth
if ax is None:
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection='3d')
if plot_kwargs is None:
plot_kwargs = dict()
solutions_list = self.get_filtered_solutions_list(labels, indices, parameter, value, None, tol)
vars = self.config_object.variables
if variables[0] in vars:
var1 = variables[0]
else:
try:
var1 = vars[variables[0]]
except:
var1 = vars[0]
if variables[1] in vars:
var2 = variables[1]
else:
try:
var2 = vars[variables[1]]
except:
var2 = vars[1]
if variables[2] in vars:
var3 = variables[2]
else:
try:
var3 = vars[variables[2]]
except:
var3 = vars[2]
for sol in solutions_list:
x = sol[var1]
y = sol[var2]
z = sol[var3]
line_list = ax.plot(x, y, z, marker=marker, markersize=markersize, linestyle=linestyle, linewidth=linewidth,
**plot_kwargs)
c = line_list[0].get_color()
plot_kwargs['color'] = c
if variables_name is None:
ax.set_xlabel(var1)
ax.set_ylabel(var2)
ax.set_zlabel(var3)
else:
if isinstance(variables_name, dict):
ax.set_xlabel(variables_name[var1])
ax.set_ylabel(variables_name[var2])
ax.set_zlabel(variables_name[var3])
else:
ax.set_xlabel(variables_name[0])
ax.set_ylabel(variables_name[1])
ax.set_zlabel(variables_name[2])
return ax
[docs]
def same_solutions_as(self, other, parameters, solutions_types=('HB', 'BP', 'UZ', 'PD', 'TR', 'LP'), tol=2.e-2):
"""Check if the continuation has exactly the same solutions as another Continuation object.
Parameters
----------
other: Continuation
The other continuation object to check the solutions.
parameters: list(str)
The parameters to be considered to check if the solutions are the same.
solutions_types: list(str)
The types of solution to consider in the search.
Default to `['HB', 'BP', 'UZ', 'PD', 'TR', 'LP']`.
tol: float or list(float) or ~numpy.ndarray(float)
The numerical tolerance of the comparison to determine if two solutions are equal.
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
Returns
-------
bool:
`True` if both continuations have exactly the same solutions according to the specified parameters.
"""
ssol = self.solutions_parameters(parameters, solutions_types)
osol = other.solutions_parameters(parameters, solutions_types)
npar = ssol.shape[0]
if isinstance(tol, float):
tol = [tol] * npar
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
ssol = _sort_arrays(ssol, npar, tol)
osol = _sort_arrays(osol, npar, tol)
if ssol.shape != osol.shape:
return False
else:
diff = ssol - osol
return np.all(np.abs(diff).T < tol)
[docs]
def solutions_in(self, other, parameters, solutions_types=('HB', 'BP', 'UZ', 'PD', 'TR', 'LP'), tol=2.e-2, return_parameters=False, return_solutions=False):
"""Check if the continuation solutions are all included in the solutions of another Continuation object.
Parameters
----------
other: Continuation
The other continuation object to check the solutions.
parameters: list(str)
The parameters to be considered to check if the solutions are the same.
solutions_types: list(str)
The types of solution to consider in the search.
Default to `['HB', 'BP', 'UZ', 'PD', 'TR', 'LP']`.
tol: float or list(float) or ~numpy.ndarray(float)
The numerical tolerance of the comparison to determine if two solutions are equal.
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
return_parameters: bool
If `True`, return an additional array with the values of the parameters for which the solutions of the two
Continuation objects match.
Returns
-------
solutions_in: bool
`True` if the solutions are all contained in the other continuations according to the specified parameters.
solutions_in_values: ~numpy.ndarray:
If `return_parameters` is `True`, an array with the values of the parameters for which the solutions of the two
continuations match.
"""
# problem in the docstring above: no sphinx highlight of types due to https://github.com/sphinx-doc/sphinx/issues/9394
# letting the problem unsolved because a patch might come later
res, params, sol = self.solutions_part_of(other, parameters, solutions_types, tol, True, True, None)
if res:
res = [params.shape[1] == self.number_of_solutions]
else:
res = [res]
if return_parameters:
res.append(params)
if return_solutions:
res.append(sol)
if len(res) == 1:
return res[0]
else:
return res
[docs]
def solutions_part_of(self, other, parameters, solutions_types=('HB', 'BP', 'UZ', 'PD', 'TR', 'LP'), tol=2.e-2, return_parameters=False, return_solutions=False, forward=None):
"""Check if a subset of the continuation solutions are included in the solutions of another Continuation object.
Parameters
----------
other: Continuation
The other continuation object to check the solutions.
parameters: list(str)
The parameters to be considered to check if the solutions are the same.
solutions_types: list(str)
The types of solution to consider in the search.
Default to `['HB', 'BP', 'UZ', 'PD', 'TR', 'LP']`.
tol: float or list(float) or ~numpy.ndarray(float)
The numerical tolerance of the comparison to determine if two solutions are equal.
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
return_parameters: bool
If `True`, return an additional array with the values of the parameters for which the solutions of the two
Continuation objects match.
return_solutions: bool
If `True`, return an additional list with the AUTO solution objects.
forward: bool or None, optional
If `True`, search only in the forward continuation.
If `False`, search only in the backward continuation.
If `None`, search in both backward and forward direction.
Default to `None`.
Returns
-------
part_of: bool
`True` if the solutions are all contained in the other continuations according to the specified parameters.
solutions_part_of_values: ~numpy.ndarray:
If `return_parameters` is `True`, an array with the values of the parameters for which the solutions of the two
continuations match.
solutions_part_of: list(AUTOSolution object):
If `return_solutions` is `True`, a list of the solutions which are included in the other Continuation object.
"""
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
ssol = self.solutions_parameters(parameters, solutions_types, forward=forward)
osol = other.solutions_parameters(parameters, solutions_types)
npar = ssol.shape[0]
if isinstance(tol, float):
tol = [tol] * npar
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
idx_list = list()
for i in range(ssol.shape[1]):
for j in range(osol.shape[1]):
dif = ssol[:, i] - osol[:, j]
if np.all(np.abs(dif) < tol):
idx_list.append(i)
break
res = [len(idx_list) > 1]
if return_parameters:
if res[0]:
res.append(ssol[:, idx_list])
else:
res.append(np.empty(0))
if return_solutions:
if res[0]:
res.append(self.get_filtered_solutions_list(parameters=parameters, values=ssol[:, idx_list], tol=tol, forward=forward))
else:
res.append(None)
if len(res) == 1:
return res[0]
else:
return res
[docs]
def branch_possibly_cross(self, other, parameters, solutions_types=('HB', 'BP', 'UZ', 'PD', 'TR', 'LP'), tol=2.e-2, return_parameters=False, return_solutions=False, forward=None):
"""Check if the continuations of two Continuation objects are possibly crossing at a given bifurcation point.
Warnings
--------
As indicated by the `possibly`, this test is weak and can be wrong.
Parameters
----------
other: Continuation
The other continuation object to check the solutions.
parameters: list(str)
The parameters to be considered to check if the solutions are the same.
solutions_types: list(str)
The types of solution to consider in the search.
Default to `['HB', 'BP', 'UZ', 'PD', 'TR', 'LP']`.
tol: float or list(float) or ~numpy.ndarray(float)
The numerical tolerance of the comparison to determine if two solutions are equal.
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
return_parameters: bool
If `True`, return an additional array with the values of the parameters for which the solutions of the two
Continuation objects match.
return_solutions: bool
If `True`, return an additional list with the AUTO solution objects.
forward: bool or None, optional
If `True`, search only in the forward continuation.
If `False`, search only in the backward continuation.
If `None`, search in both backward and forward direction.
Default to `None`.
Returns
-------
crossing: bool
`True` if the solutions are all contained in the other continuations according to the specified parameters.
crossing_values: ~numpy.ndarray
If `return_parameters` is `True`, an array with the values of the parameters for which the solutions of the two
continuations match.
solutions_list: list(AUTOSolution object)
If `return_solutions` is `True`, a list of the solutions which are included in the other Continuation object.
"""
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
ssol = self.solutions_parameters(parameters, solutions_types, forward=forward)
osol = other.solutions_parameters(parameters, solutions_types)
npar = ssol.shape[0]
if isinstance(tol, float):
tol = [tol] * npar
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
idx_list = list()
for i in range(ssol.shape[1]):
for j in range(osol.shape[1]):
dif = ssol[:, i] - osol[:, j]
if np.all(np.abs(dif) < tol):
idx_list.append(i)
break
res = [len(idx_list) == 1]
if return_parameters:
if res[0]:
res.append(ssol[:, idx_list])
else:
res.append(np.empty(0))
if return_solutions:
if res[0]:
res.append(self.get_filtered_solutions_list(parameters=parameters, values=ssol[:, idx_list], tol=tol, forward=forward)[0])
else:
res.append(None)
if len(res) == 1:
return res[0]
else:
return res
[docs]
def summary(self):
"""Return the summary of the |AUTO| continuations.
Returns
-------
str
The summary.
"""
summary_str = ""
if self.continuation['forward'] is not None:
summary_str += "Forward\n"
summary_str += "=======\n"
summary_str += self.continuation['forward'].summary() + "\n\n"
if self.continuation['backward'] is not None:
summary_str += "Backward\n"
summary_str += "========\n"
summary_str += self.continuation['backward'].summary()
return summary_str
[docs]
def print_summary(self):
"""Print the summary of the |AUTO| continuations."""
if self.continuation:
s = self.summary()
print(s)
[docs]
def check_for_repetitions(self, parameters, tol=2.e-2, return_parameters=False, return_non_repeating_solutions=False,
return_repeating_solutions=False, forward=None):
"""Check in solutions in the Continuation object are repeating, possibly indicating that the continuation is looping
on itself.
Parameters
----------
parameters: list(str)
The parameters to be considered to check if the solutions are the same.
tol: float or list(float) or ~numpy.ndarray(float)
The numerical tolerance of the comparison to determine if two solutions are equal.
If a single float is provided, assume the same tolerance for each parameter.
If a list or a 1-D array is passed, it must have the dimension of the number of parameters, each value in the
array corresponding to a parameter.
return_parameters: bool
If `True`, return an additional array with the values of the parameters for which the solutions are repeating.
return_repeating_solutions: bool
If `True`, return an additional list with the AUTO solution objects which repeat.
return_non_repeating_solutions: bool
If `True`, return an additional list with the AUTO solution objects which do nott repeat.
forward: bool or None, optional
If `True`, search only in the forward continuation.
If `False`, search only in the backward continuation.
If `None`, search in both backward and forward direction.
Default to `None`.
Returns
-------
repeating: dict(list(bool))
A dictionary with a list of boolean for each direction, indicating for each solution if it is repeating or not.
repeating_values: dict(~numpy.ndarray)
If `return_parameters` is `True`, a dictionary with for each direction an array with the values of the parameters for the solutions
are repeating.
non_repeating_solutions_list: dict(list(AUTOSolution object))
If `return_non_repeating_solutions` is `True`, a dictionary with for each direction a list of the solutions which are
included which do not repeat.
repeating_solutions_list: dict(list(AUTOSolution object))
If `return_repeating_solutions` is `True`, a dictionary with for each direction a list of the solutions which are
included which do repeat.
"""
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
repeating_solution = dict()
repeating_solution['backward'] = list()
repeating_solution['forward'] = list()
if forward:
repeating_solution['backward'] = None
elif not forward:
repeating_solution['forward'] = None
forward_dict = {'forward': True, 'backward': False}
sol = dict()
idx_dict = dict()
ridx_dict = dict()
for direction in ['forward', 'backward']:
if repeating_solution[direction] is not None:
idx_dict[direction] = list()
ridx_dict[direction] = list()
ridx_list = list()
ssol = self.solutions_parameters(parameters, solutions_types='all', forward=forward_dict[direction])
sol[direction] = ssol
npar = ssol.shape[0]
if isinstance(tol, float):
tol = [tol] * npar
if isinstance(tol, (list, tuple)):
tol = np.array(tol)
for i in range(ssol.shape[1]-1, -1, -1):
for j in range(i-1, 0, -1):
dif = ssol[:, i] - ssol[:, j]
if np.all(np.abs(dif) < tol):
ridx_list.append(i)
break
for i in range(ssol.shape[1]):
if i not in ridx_list:
repeating_solution[direction].append(False)
idx_dict[direction].append(i)
else:
repeating_solution[direction].append(True)
ridx_dict[direction].append(i)
if forward is None:
if repeating_solution['backward'] is not None:
res = [repeating_solution['backward']]
else:
res = list([])
if repeating_solution['forward'] is not None:
res[0] += repeating_solution['forward']
elif forward:
if repeating_solution['forward'] is not None:
res = [repeating_solution['forward']]
else:
res = list([])
else:
if repeating_solution['backward'] is not None:
res = [repeating_solution['backward']]
else:
res = list([])
if return_parameters:
if forward is None:
params = np.concatenate((sol['backward'][:, ridx_dict['backward']], sol['foward'][:, ridx_dict['forward']]), axis=-1)
elif forward:
params = sol['forward'][:, idx_dict['forward']]
else:
params = sol['backward'][:, idx_dict['backward']]
res.append(params)
for i, t in enumerate([return_non_repeating_solutions, return_repeating_solutions]):
if t:
tarr = dict()
for direction in ['backward', 'forward']:
if repeating_solution[direction] is not None:
tarr[direction] = np.array(repeating_solution[direction])
if i == 0:
tarr[direction] = ~tarr[direction]
all_sols = self.solutions_list_by_direction
sols = list()
if forward is None:
for direction in ['backward', 'forward']:
if repeating_solution[direction] is not None:
dir_sols = np.empty(len(all_sols[direction]), dtype=object)
dir_sols[:] = all_sols[direction]
sel_sols = dir_sols[tarr[direction]]
sols.extend(sel_sols)
else:
if forward:
direction = 'forward'
else:
direction = 'backward'
if repeating_solution[direction] is not None:
dir_sols = np.empty(len(all_sols[direction]), dtype=object)
dir_sols[:] = all_sols[direction]
sel_sols = dir_sols[tarr[direction]]
sols.extend(sel_sols)
res.append(sols)
if len(res) == 1:
return res[0]
else:
return res
def _sort_arrays(sol, npar, tol):
if npar == 1:
srt = np.squeeze(np.argsort(sol))
else:
srt = np.squeeze(np.argsort(np.ascontiguousarray(sol.T).view(','.join(['f8'] * npar)), order=['f' + str(i) for i in range(npar)], axis=0).T)
ssol = sol[:, srt].reshape((npar, -1))
for n in range(1, npar):
while True:
nc = 0
for i in range(ssol.shape[1] - 1):
if abs(ssol[n - 1, i + 1] - ssol[n - 1, i]) < tol[n - 1] and ssol[n, i + 1] < ssol[n, i]:
nc += 1
a = ssol[:, i + 1].copy()
b = ssol[:, i].copy()
ssol[:, i] = a
ssol[:, i+1] = b
if nc == 0:
break
return ssol